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Abstract

There is an increasing interest in studying nat-
ural language and computer code together, as
large corpora of programming texts become
readily available on the Internet. For ex-
ample, StackOverflow currently has over 15
million programming related questions writ-
ten by 8.5 million users. Meanwhile, there
is still a lack of fundamental NLP techniques
for identifying code tokens or software-related
named entities that appear within natural lan-
guage sentences. In this paper, we introduce
a new named entity recognition (NER) cor-
pus for the computer programming domain,
consisting of 15,372 sentences annotated with
20 fine-grained entity types. We trained in-
domain BERT representations (BERTOver-
flow) on 152 million sentences from Stack-
Overflow, which lead to an absolute increase
of +10 F1 score over off-the-shelf BERT.
We also present the SoftNER model which
achieves an overall 79.10 F1 score for code
and named entity recognition on StackOver-
flow data. Our SoftNER model incorporates a
context-independent code token classifier with
corpus-level features to improve the BERT-
based tagging model.1

1 Introduction

Recently there has been significant interest in
modeling human language together with computer
code (Quirk et al., 2015; Iyer et al., 2016; Yin and
Neubig, 2018), as more data becomes available on
websites such as StackOverflow and GitHub. This
is an ambitious yet promising direction for scal-
ing up language understanding to richer domains.
Access to domain-specific NLP tools could help a
wide range of downstream applications. For ex-
ample, extracting software knowledge bases from

1Our code and data are available at: https://
github.com/jeniyat/StackOverflowNER/

Figure 1: Examples of software-related named entities
in a StackOverflow post.

text (Movshovitz-Attias and Cohen, 2015), devel-
oping better quality measurements of StackOver-
flow posts (Ravi et al., 2014), finding similar ques-
tions (Amirreza Shirani, 2019) and more. How-
ever, there is a lack of NLP resources and tech-
niques for identifying software-related named en-
tities (e.g., variable names or application names)
within natural language texts.

In this paper, we present a comprehensive study
that investigates the unique challenges of named
entity recognition in the social computer program-
ming domain. These named entities are often
ambiguous and have implicit reliance on the ac-
companied code snippets. For example, the word
‘list’ commonly refers to a data structure, but
can also be used as a variable name (Figure 1).
In order to recognize these entities, we propose
a software-related named entity recognizer (Soft-
NER) that utilizes an attention network to com-
bine the local sentence-level context with corpus-
level information extracted from the code snip-
pets. Using our newly annotated corpus of 15,372
sentences in StackOverflow, we rigorously test
our proposed SoftNER model, which outperforms
BiLSTM-CRF model and fine-tuned BERT model
for identifying 20 types of software-related named
entities. Our key contributions are the following:

• A new StackOverflow NER corpus manu-
ally annotated with 20 types of named en-

https://github.com/jeniyat/StackOverflowNER/
https://github.com/jeniyat/StackOverflowNER/
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tities, including all in-line code within nat-
ural language sentences (§2). We demon-
strate that NER in the software domain is an
ideal benchmark task for testing effectiveness
of contextual word representations, such as
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019), due to its inherent polysemy and
salient reliance on context.

• An in-domain trained neural SoftNER tag-
ger for StackOveflow (§3) that can recognize
20 fine-grained named entity types related to
software developing. We also tested its per-
formance on GitHub data of readme files and
issue reports.

• A code token recognizer (§3.1) that utilizes
StackOveflow code snippets to capture the
spelling patterns of code-related tokens, and
consistently improves the NER tagger.

• In-domain pretrained ELMo and BERT rep-
resentations (§3.3) on 152 million sentences
from StackOverflow that significantly outper-
forms off-the-shelf ELMo and leads to more
than 21 points increase in F1 score over off-
the-shelf BERT.

Overall, our named entity tagger (SoftNER)
achieves a 79.10% F1 score on StackOverflow and
61.08% F1 score on GitHub data for extracting the
20 software related named entity types. We be-
lieve this performance is sufficiently strong to be
practically useful. We have released our data and
code, including the named entity tagger, our anno-
tated corpus, annotation guideline, a specially de-
signed tokenizer, and pre-trained StackOverflow
BERT and ELMo embeddings.

2 Annotated StackOverflow Corpus

In this section, we describe the construction of
our StackOverflow NER corpus. We randomly se-
lected 1,237 question-answer threads from Stack-
Overflow 10-year archive (from September 2008
to March 2018) and manually annotated them with
20 types of entities. For each question, four an-
swers were annotated, including the accepted an-
swer, the most upvoted answer, as well as two
randomly selected answers (if they exist). Table
1 shows the statistics of our corpus. 40% of the
question-answer threads were double-annotated,
which are used as the development and test sets
in our experiments (§4). We also annotated 6,501
sentences from GitHub readme files and issue re-
ports as additional evaluation data.

Train Dev Test Total
#questions 741 247 249 1,237
#answers 897 289 315 1,501
#sentences 9,315 2,942 3,115 15,372
#tokens 136,996 43,296 45,541 225,833
#entities 11,440 3,949 3,733 19,122

per Question per Answer
avg. #sentences 6.84 4.60
avg. #tokens 98.46 69.37
avg. #entities 7.62 5.11
avg. #tokens per sent. 14.38 15.08

Table 1: Statistics of our StackOverflow NER cor-
pus. These counts exclude all the code blocks and
output blocks (i.e., lines that appear within 〈code〉 and
〈blockquote〉 tags).

2.1 Annotation Schema
We defined and annotated 20 types of fine-grained
entities, including 8 code-related entities and 12
natural language entities. The code entities in-
clude mentions of CLASS, VARIABLE, IN LINE

CODE, FUNCTION, LIBRARY, VALUE, DATA

TYPE, and HTML XML TAG. Whereas the nat-
ural language entities include mentions of AP-
PLICATION, UI ELEMENT, LANGUAGE, DATA

STRUCTURE, ALGORITHM, FILE TYPE, FILE

NAME, VERSION, DEVICE, OS, WEBSITE, and
USER NAME.

Our annotation guideline was developed
through several pilots and further updated with
notes to resolve difficult cases as the annotation
progressed.2 Each entity type was defined to
encourage maximum span length (e.g., ‘SGML
parser’ instead of ‘SGML’). We annotated noun
phrases without including modifiers (e.g., ‘C’
instead of ‘Plain C’), except a few special cases
(e.g., ‘rich text’ as a common FILE TYPE). On
average, an entity contains about 1.5 tokens.
While VARIABLE, FUNCTION and CLASS names
mostly consist of only a single token, our anno-
tators found that some are written as multiple
tokens when mentioned in natural language text
(e.g., ‘array list’ for ‘ArrayList’ in Figure 1).
The annotators were asked to read relevant code
blocks or software repositories to make a decision,
if needed. Annotators also searched Google or
Wikipedia to categorize unfamiliar cases.

The annotators were asked to update, correct,
or add annotations from the user provided 〈code〉
markdown tags. StackOverflow users can utilize
〈code〉 markdowns to highlight the code entities

2Our annotation guideline is available at: https://
github.com/jeniyat/StackOverflowNER/.

https://github.com/jeniyat/StackOverflowNER/
https://github.com/jeniyat/StackOverflowNER/
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within the natural language sentences. However,
in reality, many users do not enclose the code
snippets within the 〈code〉 tags; and sometimes
use them to highlight non-code elements, such as
email addresses, user names, or natural language
words. While creating the StackOverflow NER
corpurs, we found that 59.73% of code-related en-
tities are not marked by the StackOverflow users.
Moreover, only 75.54% of the 〈code〉 enclosed
texts are actually code-related, while 10.12% used
to are highlighting natural language texts. The rest
of cases are referring to non-code entities, such as
SOFTWARE NAMES and VERSIONS. While mark-
down tag could be a useful feature for entity seg-
mentation (§3.1.3), we emphasize the importance
of having a human annotated corpus for training
and evaluating NLP tools in the software domain.

2.2 Annotation Agreement
Our corpus was annotated by four annotators who
are college students majored in computer sci-
ence. We used a web-based annotation tool, BRAT
(Stenetorp et al., 2012), and provided annotators
with links to the original post on StackOverflow.
For every iteration, each annotator was given 50
question-answer threads to annotate, 20 of which
were double-annotated. An adjudicator then dis-
cussed disagreements with annotators, who also
cross-checked the 30 single-annotated questions in
each batch. The inter-annotator agreement is 0.62
before adjudication, measured by span-level Co-
hen’s Kappa (Cohen, 1960).

2.3 Additional GitHub Data
To better understand the domain adaptability of
our work, we further annotated the readme files
and issue reports from 143 randomly sampled
repositories in the GitHub dump (Gousios and
Spinellis, 2012) (from October 29, 2007 to De-
cember 31, 2017). We removed all the code
blocks from the issue reports and readme files col-
lected from these 143 repositories. The resulting
GitHub NER dataset consists of 6,510 sentences
and 10,963 entities of 20 types labeled by two in-
house annotators. The inter-annotator agreement
of this dataset is 0.68, measured by span-level Co-
hen’s Kappa.

2.4 StackOverflow/GitHub Tokenization
We designed a new tokenizer, SOTOKENIZER,
specifically for the social computer programming
domain. StackOverflow and GitHub posts exhibit

common features of web texts, including abbrevia-
tions, emoticons, URLs, ungrammatical sentences
and spelling errors. We found that tokenization is
non-trivial as many code-related tokens are mis-
takenly split by the existing web-text tokenizers,
including the CMU Twokenizer (Gimpel et al.,
2011), Stanford TweetTokenizer (Manning et al.,
2014), and NLTK Twitter Tokenizer (Bird et al.,
2009):
txScope.Complete() [ ‘txScope’ ‘.’ ‘Complete’ ‘(’ ‘)’ ]
std::condition variable [ ‘std’ ‘:’ ‘:’ ‘condition variable’]
math.h [ ‘math’ ‘.’ ‘h’]
〈span〉 [‘〈’ ‘span’ ‘〉’]
a==b [‘a’ ‘=’ ‘=’ ‘b’]

Therefore, we implemented a new tokenizer, us-
ing Twokenizer3 as the starting point and added
additional regular expression rules to avoid split-
ting code-related tokens.

3 Named Entity Recognition Models

The extraction of software-related named entities
imposes significant challenges as it requires re-
solving a significant amount of unseen tokens, in-
herent polysemy, and salient reliance on context.
Unlike news or biomedical data, spelling patterns
and long-distance dependencies are more crucial
in the software domain to resolve ambiguities and
categorize unseen words. Taken in isolation, many
tokens are highly ambiguous and can refer to ei-
ther programming concepts or common English
words, such as: ‘go’, ‘react’, ‘spring’, ‘while’,
‘if ’, ‘select’. To address these challenges, we de-
sign the SoftNER model that leverages sentential
context to disambiguate and domain-specific char-
acter representations to handle rare words. Figure
2 shows the architecture of our model, which con-
sists of primarily three components:

• An input embedding layer (§3.1) that ex-
tracts contextualized embeddings from the
BERTbase model and two new domain-
specific embeddings for each word in the in-
put sentence.

• A embedding attention layer (§3.2) that
combines the three word embeddings using
an attention network.

• A linear-CRF layer that predicts the entity
type of each word using the attentive word
representations from the previous layer.

3https://github.com/myleott/
ark-twokenize-py

https://github.com/myleott/ark-twokenize-py
https://github.com/myleott/ark-twokenize-py
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Figure 2: Our SoftNER model. It utilizes an attention network to combine the contextual word embeddings
(BERTbase) with the domain-specific embeddings (Code Recognizer and Entity Segmenter). The detailed structure
of the attention network is depicted on the right.

3.1 Input Embeddings
For each word in the input sentence, we extract
in-domain BERT (Devlin et al., 2019) represen-
tations and two new domain-specific embeddings
produced by (i) a Code Recognizer, which rep-
resents if a word can be part of a code entity re-
gardless of context; and (ii) an Entity Segmenter,
that predicts whether a word is part of any named
entity in the given sentence. Each domain-specific
embedding is created by passing a binary value,
predicted by a network independent from the Soft-
NER model. We describe the two standalone aux-
iliary models that generate these domain-based
vectors below.

3.1.1 In-domain Word Embeddings
Texts in the software engineering domain contain
programming language tokens, such as variable
names or code segments, interspersed with natural
language words. This makes input representations
pre-trained on general book or Wikipedia texts
unsuitable for software domain. We pre-trained
different in-domain word embeddings, including
BERT (BERTOverflow), ELMo (ELMoVerflow),
and GloVe (GloVerflow) vectors on the Stack-
Overflow 10-year archive4 of 152 million sen-
tences and 2.3 billion tokens (§3.3).

3.1.2 Context-independent Code Recognition
Humans with prior programming knowledge can
easily recognize that ‘list()’ is code, ‘list’ can be
either code or a common English word, whereas
‘listing’ is more likely a non-code natural lan-
guage token. We thus introduce a code recognition
module to capture such prior probability of how

4https://archive.org/details/
stackexchange

likely a word can be a code token without consid-
ering any contextual information. It is worth not-
ing that this standalone code recognition model is
also useful for language-and-code research, such
as retrieving code snippets based on natural lan-
guage queries (Iyer et al., 2016; Giorgi and Bader,
2018; Yao et al., 2019)

Our code recognition model (Code Recog-
nizer) is a binary classifier. It utilizes language
model features and spelling patterns to predict
whether a word is a code entity. The input fea-
tures include unigram word and 6-gram charac-
ter probabilities from two language models (LMs)
that are trained on the Gigaword corpus (Napoles
et al., 2012) and all the code-snippets in the Stack-
Overflow 10-year archive respectively. We also
pre-trained FastText (Joulin et al., 2016) word em-
beddings using these code-snippets, where a word
vector is represented as a sum of its character
ngrams. We first transform each ngram probability
into a k-dimensional vector using Gaussian bin-
ning (Maddela and Xu, 2018), which has shown to
improve the performance of neural models using
numeric features (Sil et al., 2017; Liu et al., 2016;
Maddela and Xu, 2018). We then feed the vec-
torized features into a linear layer, concatenate the
output with FastText character-level embeddings,
and pass them through another hidden layer with
sigmoid activation. We predict the token as a code-
entity if the output probability is greater than 0.5.
This binary prediction is then converted into a vec-
tor and used as an input to the SoftNER model.

3.1.3 Entity Segmentation

The segmentation task refers to identifying en-
tity spans without assigning entity category. En-
tity segmentation is simpler and less error-prone

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
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than entity recognition as it does not require a
fine-grained classification of the entity types. In
fact, a segmentation model (Entity Segmenter)
trained on our annotated StackOverflow corpus
can achieve 90.41% precision on the dev set (de-
tails in §4.5), predicting whether each token is a
part of entity in the given sentence. Our segmen-
tation model fine-tunes the in-domain BERT after
concatenating it with two hand-crafted features:

• Word Frequency represents the word occur-
rence count in the training set. As many code
tokens are defined by individual users, they
occur much less frequently than normal En-
glish words. In fact, code and non-code to-
kens have an average frequency of 1.47 and
7.41 respectively in our corpus. Moreover,
ambiguous token that can be either code or
non-code entities, such as ‘windows’, have a
much higher average frequency of 92.57. To
leverage this observation, we include word
frequency as a feature, converting the scalar
value into a k-dimensional vector by Gaus-
sian binning (Maddela and Xu, 2018).

• Code Markdown indicates whether the
given token appears inside a 〈code〉 mark-
down tag in the StackOverflow post. It is
worth noting that 〈code〉 tags are noisy as
users do not always enclose inline code in a
〈code〉 tag or sometimes use the tag to high-
light non-code texts (details in §2.1). Never-
theless, we find it helpful to include the mark-
down information as a feature as it improves
the performance of our segmentation model.

The inclusion of hand-crafted features is influ-
enced by Wu et al. (2018), where word-shapes and
POS tags were shown to improve the performance
of sequence tagging models.

3.2 Embedding-Level Attention
For each input word wi in the input sentence, we
have three embeddings: BERT (wi1), Code Rec-
ognizer (wi2), and Entity Segmenter (wi3). We
introduce the embedding-level attention αit (t ∈
{1, 2, 3}), which captures each embedding’s con-
tribution towards the meaning of the word, to com-
bine them together. To compute αit, we pass the
input embeddings through a bidirectional GRU
and generate their corresponding hidden repre-
sentations hit =

←−−→
GRU(wit). These vectors are

then passed through a non-linear layer, which out-
puts uit = tanh(Wehit + be). We introduce an

embedding-level context vector ue, which is ran-
domly initialized and updated during the training
process. This context vector is combined with
the hidden embedding representation using a soft-
max function to extract weight of the embeddings:
αit =

exp(uit
Tue)∑

texp(uit
Tue)

. Finally, we create the word
vector by a weighted sum of all the information
from different embeddings as wordi =

∑
tαithit.

The aggregated word vector wordi is then fed into
a linear-CRF layer, which predicts the entity cate-
gory for each word based the BIO tagging schema.

3.3 Implementation Details

We use PyTorch framework to implement our
proposed SoftNER model and its two auxiliary
components, namely code recognition and entity
segmentation. The input to the SoftNER model
include 850-dimensional vectors extracted from
both the code recognizer and the entity segmenter.

We pre-trained BERTbase, ELMo and GloVe
vectors on 152 million sentences from the Stack-
Overflow, excluding sentences from the 1,237
posts in our annotated corpus. The pre-
training of the 768-dimensional BERTbase model
with 64,000 WordPiece vocabulary took 7 days
on a Google TPU. The pre-training of 1024-
dimensional ELMo vectors took 46 days on 3
NVIDIA Titan X Pascal GPUs. The pre-training
of 300-dimensional GloVe embeddings (Penning-
ton et al., 2014) with a frequency cut-off of 5 took
8 hours on a server with 32 CPU cores and 386 GB
memory.

We train the SoftNER model and the two aux-
iliary models separately. Our segmentation model
follows the simple BERT fine-tuning architecture
except for the input, where BERT embeddings are
concatenated with 100-dimensional code mark-
down and 10-dimensional word frequency fea-
tures. We set the number of bins k to 10 for Gaus-
sian vectorization. Our code recognition model is
a feedforward network with two hidden layers and
a single output node with sigmoid activation.

4 Evaluation

In this section, we show that our SoftNER model
outperforms all the previous NER approaches on
the StackOverflow and GitHub data. We also dis-
cuss the factors pivotal to the performance of our
model, namely pre-trained in-domain BERT em-
beddings and two domain-specific auxiliary tasks.
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P R F1

Test set
Feature-based CRF 71.77 39.70 51.12
BiLSTM-CRF (ELMoVerflow) 73.03 64.82 68.68
Attentive BiLSTM-CRF (ELMoVerflow) 78.22 78.59 78.41
Fine-tuned BERT 77.02 45.92 57.54
Fine-tuned BERTOverflow 68.77 67.47 68.12
SoftNER (BERTOverflow) 78.42 79.79 79.10
Dev set
Feature-based CRF 66.85 46.19 54.64
BiLSTM-CRF (ELMoVerflow) 74.44 68.71 71.46
Attentive BiLSTM-CRF (ELMoVerflow) 79.43 80.00 79.72
Fine-tuned BERT 79.57 46.42 58.64
Fine-tuned BERTOverflow 72.11 70.51 71.30
SoftNER (BERTOverflow) 78.81 81.72 80.24

Table 2: Evaluation on the dev and test sets of the
StackOverflow NER corpus. Our SoftNER model out-
performs the existing approaches.

4.1 Data

We train and evaluate our SoftNER model on the
StackOverflow NER corpus of 9,352 train, 2,942
development and 3,115 test sentences we con-
structed in §2. We use the same data for our seg-
mentation model but replace all the entity tags
with an I-ENTITY tag. For the code recogni-
tion model, we created a new lexicon of 6,000
unique tokens randomly sampled from the train-
ing set of the StackOverflow NER corpus. Each
token was labelled independently without context
as CODE, AMBIGUOUS or NON-CODE by two an-
notators with computer science background. The
inter-annotator agreement was 0.89, measured by
Cohen’s Kappa. After discarding disagreements,
we divided the remaining 5,312 tokens into 4,312
train and 1,000 test instances. Then, we merged
AMBIGUOUS and NON-CODE categories to facili-
tate binary classification. We name this dataset of
5312 individual tokens as SOLEXICON.

4.2 Baselines

We compare our model with the following base-
line and state-of-the-art approaches:

• A Feature-based Linear CRF model which
uses the standard orthographic, context and
gazetteer features, along with the code mark-
down tags and handcrafted regular expres-
sions to recognize code entities (details in
Appendix A).

• A BiLSTM-CRF model with in-domain
ELMo embeddings (ELMoVerflow; details
in §3.3). This architecture is used as the state-
of-the-art baseline named-entity recognition

models in various domains (Lample et al.,
2016; Kulkarni et al., 2018; Dai et al., 2019).

• An Attentive BiLSTM-CRF model with
in-domain ELMo embeddings as well as
domain-specific embeddings from the code
recognizer and the entity segmenter. This
model combines these three word embed-
dings using an attention network and then uti-
lizes a BiLSTM-CRF layer to predict the en-
tity type of each input word (details in Ap-
pendix B).

• A Fine-tuned out-of-domain BERT model
where we fine-tune the original BERTbase

cased checkpoint5 on our annotated corpus.

• A Fine-tuned in-domain BERT model
where we fine-tune the in-domain pre-trained
BERTbase (BERTOverflow; details in §3.3)
cased checkpoint6 on our annotated corpus.

4.3 Results
Table 2 shows the precision (P), recall (R) and
F1 score comparison of different models evalu-
ated on the StackOverflow NER corpus. Our Soft-
NER model outperforms the existing NER ap-
proaches in all the three metrics. Fine-tuning over
in-domain trained BERT (BERTOverflow), in par-
ticular, improves F1 score by more than 10 points
in comparison to using the original BERT.

4.4 In-domain vs. out-of-domain Word
Embeddings

Table 3 shows the performance comparison be-
tween in-domain and out-of-domain word em-
beddings. We consider off-the-shelf BERT (De-
vlin et al., 2019), ELMo (Peters et al., 2018) and
GloVe (Pennington et al., 2014) vectors trained
on newswire and web texts as out-of-domain
embeddings. When using the BiLSTM-CRF
model (Lample et al., 2016; Kulkarni et al., 2018;
Dai et al., 2019), we observe a large increase
of 13.64 F1 score when employing in-domain
ELMo (ELMoVerflow) representations over in-
domain GloVe (GloVeOverflow), and an increase
of 15.71 F1 score over out-of-domain ELMo. We
found that fine-tuning out-of-domain BERT (De-
vlin et al., 2019) outperforms the out-of-domain

5https://github.com/google-research/
BERT

6https://github.com/lanwuwei/
BERTOverflow/

https://github.com/google-research/BERT
https://github.com/google-research/BERT
https://github.com/lanwuwei/BERTOverflow/
https://github.com/lanwuwei/BERTOverflow/
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P R F1

out-of-domain Word Embeddings
GloVe (newswire+Wiki+Web) 61.71 49.08 54.67
ELMo (newswire+Wiki) 67.66 47.41 55.75
Fine-tuned BERT (book+Wiki) 45.92 77.02 57.54
In-Domain Word Embeddings
GloVeOverflow 66.28 51.28 57.82
ELMoVerflow 74.44 68.71 71.46
Fine-tuned BERTOverflow 72.11 70.51 71.30

Table 3: Performance of fine-tuned BERT model,
BiLSTM-CRF model with GloVe and ELMo embed-
dings on the dev set of our StackOverflow NER corpus.
Contextualized word representations show a clear ben-
efit when trained on the in-domain StackOverflow data.

ELMo (Table 3), although it underperforms in-
domain ELMo (ELMoVerflow) by 12.92 F1 score
and in-domain BERt (BERTOverflow) by 12.76
F1 score (Table 2). Similarly, in-domain ELMo
outperforms the out-of-domain fine-tuned BERT
by 10.67 F1 score on Github data (Table 8; more
details in §5).

It is worth noting that, the performance im-
provements from contextual word embeddings are
more pronounced on our software domain than
on newswire and biomedical domains. Original
ELMo and BERT outperform GloVe by 2.06 and
2.12 points in F1 respectively on CoNLL 2003
NER task of newswire data (Peters et al., 2018;
Devlin et al., 2019). For biomedical domain, in-
domain ELMo outperforms out-of-domain ELMo
by only 1.33 points in F1 on the BC2GM dataset
(Sheikhshabbafghi et al., 2018).

We hypothesized that the performance gains
from the in-domain contextual embeddings are
largely aided by the model’s ability to handle am-
biguous and unseen tokens. The increase in per-
formance is especially notable (41%−→ 70% accu-
racy) for unseen tokens, which constitute 38% of
the tokens inside gold entity spans in our dataset.
This experiment also demonstrates that our anno-
tated NER corpus provides an attractive test-bed
for measuring the adaptability of different contex-
tual word representations.

4.5 Evaluation of Auxiliary Systems
The domain-specific vectors produced by the
Code Recognizer and the Entity Segmenter are
also crucial for the overall performance of our
SoftNER model. Table 4 shows an ablation study.
Removing code recognizer vectors and entity seg-
menter vectors results in a drop of 2.19 and 3.69 in
F1 scores respectively. If we replace embedding-
level attention with a simple concatenation of em-

P R F1

SoftNER 78.81 81.72 80.24
– Embedding Attention 75.83 79.09 77.43
– Code Recognizer 78.76 77.35 78.05
– Entity Segmenter 77.82 75.32 76.55

Table 4: Ablation study of SoftNER on the dev set of
StackOverflow NER corpus.

P R F1

Token Frequency 33.33 2.25 4.22
Most Frequent Label 82.21 58.59 68.42
Our Code Recognition Model 78.43 83.33 80.80

– Character ngram LMs 64.13 84.51 72.90
– Word ngram LMs 67.98 72.96 70.38
– FastText Embeddings 76.12 81.69 78.81

Table 5: Evaluation results and feature ablation of our
code recognition model on SOLEXICON test set of
1000 manually labeled unique tokens, which are sam-
pled from the train set of StackOverflow NER corpus.

beddings, the performance also drop by 2.81 F1.
In addition, we evaluate the effectiveness of our
two domain-specific auxiliary systems on their re-
spective tasks.

Code Recognition: Table 5 compares the per-
formance of our code recognition model with
other baselines on the SLEXICON test set (§4.1),
which consists of 1,000 random words from the
train set of StackOverflow NER corpus classified
as either a code or a non-code token. The baselines
include: (i) a Most Frequent Label baseline, which
assigns the most frequent label according to the
human annotation in SOLEXICON train set; and
(ii) a frequency baseline, which learns a threshold
over token frequency in the train set of StackOver-
flow NER corpus using a decision tree classifier.
Our model outperforms both baselines in terms of
F1 score. Although the most frequent label base-
line achieves better precision than our model, it
performs poorly on unseen tokens resulting in a
large drop in recall and F1 score. The ablation
experiments show that the FastText word embed-
dings along with the character and word-level fea-
tures are crucial for the code recognition model.

Entity Segmentation: Table 6 shows the per-
formance of our segmentation model on the dev
set of our StackOverflow corpus, where the en-
tity tags are replaced by an I-ENTITY tag. Our
model achieves an F1 score of 88.09 and with
90.41% precision and 85.89% recall. Incorporat-
ing word frequency and code markdown feature
increases the F1 score by 1.57 and 2.66 points re-
spectively. The low 10.5 F1 score of Stanford NER
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P R F1

Stanford NER Tagger 63.02 5.74 10.52
Our Entity Segmentation Model 90.41 85.89 88.09

– Word Frequency 88.32 84.79 86.52
– Code Markdown 86.23 84.64 85.43

Table 6: Evaluation of our segmentation model on the
dev set of the StackOverflow NER corpus.

tagger (Manning et al., 2014), which is trained
on newswire text, demonstrates the importance of
domain-specific tools for the software engineering
domain.

4.6 Error Analysis
Based on our manual inspection, the incorrect pre-
dictions made by NER systems on StackOverflow
data can be largely classified into the following
two categories (see examples in Table 7):

• Segmentation Mismatch refers to the cases
where model predicts the boundary of enti-
ties incorrectly. Our SoftNER model reduces
such segmentation errors by 89.36% com-
pared to the fine-tuned BERTOverflow base-
line.

• Entity-Type Mismatch refers to the errors
where a code entity (e.g., names of vari-
ables) is predicted as a non-code entity (e.g.,
names of devices), and vice-versa. Our
SoftNER model reduces such entity type er-
rors by 13.54% compared to the fine-tuned
BERTOverflow baseline.

As illustrated in Figure 3, our SoftNER model re-
duced the errors in both categories by incorporat-
ing the auxiliary outputs from segmenter and code
recognizer model.

5 Domain Adaptation to GitHub data

To understand the domain adaptability of our
StackOverflow based SoftNER, we evaluate its
performance on readme files and issue reports
from 143 randomly sampled repositories in the
GitHub dump (Gousios and Spinellis, 2012). We
also trained ELMo embeddings (ELMoGithub) on
4 million sentences from randomly sampled 5,000
GitHub repositories.

Table 8 shows that the performance of our Soft-
NER model using StackOverflow ELMo embed-
dings is similar to the top performing BiLSTM-
CRF model using GitHub ELMo embeddings with
a difference of only 1.61 points in F1. We also
did not observe any significant gain after adding

Segmentation

Mismatch

Entity-Type

Mismatch

Table 7: Representative examples of system errors.

Figure 3: Comparison of errors made by the fine-tuned
BERTOverflow baseline and our SoftNER model on
the dev set of the StackOverflow NER corpus. In the
heatmap, darker cell color corresponds to higher error
counts. Our SoftNER model reduces errors in all the
categories.

P R F1

Feature-Based CRF 43.16 35.71 39.09
BiLSTM-CRF (ELMoGitHub) 64.53 60.96 62.69
Attentive BiLSTM-CRF (ELMoVerflow) 62.05 59.20 60.59
Attentive BiLSTM-CRF (ELMoGitHub) 63.29 60.89 62.07
Fine-tuned out-of-domain BERT 56.59 48.13 52.02
Fine-tuned BERTOverflow 61.71 58.75 60.19
SoftNER (BERTOverflow) 61.92 60.26 61.08

Table 8: Evaluation on the GitHub NER dataset of
readme files and issue posts. All the models are trained
on our StackOverflow NER corpus. Our SoftNER
model performs close to BiLSTM-CRF model trained
on the GitHub ELMo embeddings.

the code recognizer and segmenter vectors to the
Github ELMo embeddings. We think one likely
explanation is that GitHub data contains less code-
related tokens when compared to StackOverflow.
The percentage of code-related entity tokens is
63.20% in GitHub and 77.21% in StackOverflow.
Overall, we observe a drop of our SoftNER tag-
ger from 79.10 F1 on StackOverflow (Table 2)
to 61.08 F1 on GitHub data (Table 8) in F1 due
to domain mismatch. However, we believe that
our NER tagger still achieves sufficient perfor-
mance to be useful for applications on GitHub.7

We leave investigation of semi-supervised learn-
ing and other domain adaptation approaches for
future work.

7As a reference, the state-of-the-art performance for 10-
class Twitter NER is 70.69 F1(Zhang et al., 2018).
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6 Related Work

The CoNLL 2003 dataset (Sang and De Meul-
der, 2003) is a widely used benchmark for
named entity recognition, which contains anno-
tated newswire text from the Reuters RCV1 cor-
pus. State-of-the-art approaches on this dataset
(Baevski et al., 2019) use a bidirectional LSTM
(Lample et al., 2016; Ma and Hovy, 2016) with
conditional random field (Collobert et al., 2011)
and contextualized word representations (McCann
et al., 2017; Peters et al., 2018; Devlin et al.,
2019).

Named entity recognition has been explored for
new domains and languages, such as social me-
dia (Finin et al., 2010; Ritter et al., 2011; Plank
et al., 2014; Derczynski et al., 2015; Limsopatham
and Collier, 2016; Aguilar et al., 2017), biomedi-
cal texts (Collier and Kim, 2004; Greenberg et al.,
2018; Kulkarni et al., 2018), multilingual texts
(Benajiba et al., 2008; Xie et al., 2018) and code-
switched corpora (Aguilar et al., 2018; Ball and
Garrette, 2018). Various methods have been in-
vestigated for handling rare entities, for example
incorporating external context (Long et al., 2017)
or approaches that make use of distant supervision
(Choi et al., 2018; Yang et al., 2018; Onoe and
Durrett, 2019).

There has been relatively little prior work on
named entity recognition in the software engineer-
ing domain. Ye et al. (2016) annotated 4,646
sentences from StackOverflow with five named
entity types (Programming Language, Platform,
API, Tool-Library-Framework and Software Stan-
dard). The authors used a traditional feature-based
CRF to recognize these entities. In contrast, we
present a much larger annotated corpus consisting
of 15,372 sentences labeled with 20 fine-grained
entity types. We also develop a novel attention
based neural NER model to extract those fine-
grained entities.

7 Conclusion

In this work, we investigated the task of named
entity recognition in the social computer program-
ming domain. We developed a new NER cor-
pus of 15,372 sentences from StackOverflow and
6,510 sentences from GitHub annotated with 20
fine-grained named entities. We demonstrate that
this new corpus is an ideal benchmark dataset
for contextual word representations, as there are
many challenging ambiguities that often require

long-distance context to resolve. We also pro-
posed a novel attention based model, named Soft-
NER, that outperforms the state-of-the-art NER
models on this dataset. Furthermore, we inves-
tigated the important sub-task of code recogni-
tion. Our code recognition model captures addi-
tional spelling information beyond then contex-
tual word representations and consistently helps
to improve the NER performance. We believe
our corpus, StackOverflow-specific BERT embed-
dings and named entity tagger will be useful for
various language-and-code tasks, such as code re-
trieval, software knowledge base extraction and
automated question-answering.
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A Feature-Based CRF Baseline

We implemented a CRF baseline model using
CRFsuite8 to extract the software entities. This
model uses standard orthographic, contextual and
gazetteer features. It also includes the code mark-
down tags (§3.1.3) and a set of regular expres-
sion features. The regular expressions are de-
veloped to recognize specific categories of code-
related entities. Feature ablation experiments on
this CRF model are presented in Table 9. One
noticeable distinction from the named entity rec-
ognizer in many other domains is that the contex-
tual features are not as helpful in feature-based
CRFs for classifying software entities. This is be-
cause, in the StackOverflow NER corpus a sig-
nificant number of neighbouring words are shared
among different software entities. As an exam-
ple, the bigram ‘in the’ frequently appears as the
left context of the following types: APPLICATION,
CLASS, FUNCTION, FILE TYPE, UI ELEMENT,
LIBRARY, DATA STRUCTURE and LANGUAGE.

P R F1

Feature-based CRF 66.85 46.19 54.64
– Context Features 68.91 43.58 53.39
– Markdown Feature 70.64 40.15 51.20
– Rule and Gazetteer Features 69.71 40.66 51.36

Table 9: Feature based CRF performance with varying
input features on dev data.

B Attentive BiLSTM CRF with
ELMoVerflow

We propose a baseline Attentive NER model that
utilizes a BiLSTM-CRF network to predict the en-
tity type of each word from its weighted repre-
sentations. The weighted word representations are
extracted by a multi-level attention network, sim-
ilar to Yang et al.(2016), that combines the con-
textualized ELMo embeddings with the code rec-
ognizer (§3.1.2) and segmenter vector (§C). These
three input embeddings are merged together in the
first attention layer and then their corresponding
weights are calculated using the second layer. Al-
though such multi-level attention is not commonly
used in NER, we found it empirically helpful for
the software domain (see Table 10).

Embedding-Level Attention uses three embed-
dings, ELMo (wi1), Code Recognizer (wi2), and
Entity Segmenter (wi3), for each word wi in

8http://www.chokkan.org/software/crfsuite/

P R F1

Attentive BiLSTM-CRF 79.43 80.00 79.72
– Multi-level Attention 77.68 78.08 77.88
– Code Recognizer 77.18 77.76 77.47
– Entity Segmenter 74.82 75.32 75.07

Table 10: Ablation study of Attentive-NER on the dev
set of StackOverflow NER corpus.

the input sentence. The embedding-level atten-
tion αit (t ∈ {1, 2, 3}) to captures each embed-
ding’s contribution towards the meaning of the
word. To compute αit, it pass the input em-
beddings through a bidirectional GRU and gen-
erate their corresponding hidden representations
hit =

←−−→
GRU(wit). These vectors are then passed

through a non-linear layer, which outputs uit =
tanh(Wehit + be). It uses an embedding-level
context vector, ue, which is learned during the
training process. This context vector is combined
with the hidden embedding representation using
a softmax function to extract weight of the em-
beddings, αit =

exp(uit
Tue)∑

texp(uit
Tue)

. Finally, the word
vector is created by a weighted sum of all the in-
formation from different embeddings as wordi =∑

tαithit.

Weighted Word Representation uses a word-
level weighting factor αi to emphasize the impor-
tance of each word wi for the NER task. Similar
to the embedding-level attention, it calculates αi

from the weighted word vectors wordi. A bidirec-
tional GRU is used to encode the summarized in-
formation from neighbouring words and thus it get
hi =

←−−→
GRU(wordi). This is then passed through

a hidden layer which outputs ui = tanh(Wwhi +
bw). Then the normalized weight for each word
vector is extracted by αi =

exp(ui
Tuw)∑

texp(ui
Tuw)

, where
uw is another word-level context vector that is
learned during training. The final weighted word
representation is computed by word′i = αihi.

Subsequently, the aggregated word vector
word′i is fed into a BiLSTM-CRF network, which
predicts the entity category for each word. The
complete architecture of the Attentive BiLSTM
CRF model is illustrated in Figure 4. Compared to
BiLSTM-CRF, our proposed Attentive BiLSTM-
CRF demonstrates a 9.7 increase in F1 on the test
set (Table 2) and reduces the segmentation errors
and entity type errors by 80.33% 23.34% respec-
tively.
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Figure 4: Our SoftNER model. It utilizes an attention network to combine the contextual word embeddings
(ELMo) with the domain-specific embeddings (Code Recognizer and Entity Segmenter). The detailed structure of
the attention network is depicted on the right.

C Entity Segmentation with
ELMoVerflow

The Attentive-NER tagger utilizes the outputs
from an auxiliary segmentation module which
consists of a BiLSTM encoder and a CRF de-
coder. This model concatenates ELMo embed-
dings with two hand-crafted features- word fre-
quency and code markdown (§3.1.3).

The segmentation model follows the same ar-
chitecture and training setup as the Attentive-NER
model except for the input, where ELMo embed-
dings are concatenated with 100-dimensional code
markdown and 10-dimensional word frequency
features. The binary output from this entity seg-
menter model is later passed as through an embed-
ding layer and used as one of the auxiliary inputs
of the Attentive NER model.

Table 11 shows the performance of this segmen-
tation model with ELMoVerflow on the dev set.
This model achieves an F1 score of 84.3 and an
accuracy of 97.4%. The ablation study in Table
11 depicts the importance of the hand-crafted fre-
quency and markdown features for this segmenter
model by providing an increment of 1.2 and 2.1
points in the F1 score respectively.

P R F1

Entity Segmentation (ELMoVerflow) 86.80 81.86 84.26
– Word Frequency 84.61 81.53 83.04
– Code Markdown 82.49 81.83 82.16

Table 11: Ablation study of our segmentation model
with ELMoVerflow on the dev set of the StackOverflow
NER corpus.


