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Abstract

We describe TweeTIME, a minimally su-
pervised time resolver for social the media
domain that learns from large quantities
of unlabeled data and requires no hand-
engineered rules or hand-annotated train-
ing corpora. Our system achieves 0.68 F1
score on the end-to-end task of resolving
date expressions, outperforming a broad
range of state-of-the-art systems.

1 Introduction

Temporal expressions are words or phrases that re-
fer to dates, times or durations. Resolving time
expressions is an important task in information ex-
traction (IE) that enables downstream applications
such as calendars or timelines of events (Derczyn-
ski and Gaizauskas, 2013; Do et al., 2012; Rit-
ter et al.,, 2012; Ling and Weld, 2010), knowl-
edge base population (Ji et al., 2011), informa-
tion retrieval (Alonso et al., 2007), automatically
scheduling meetings from email and more. Pre-
vious work in this area has applied rule-based
systems (Mani and Wilson, 2000; Bethard, 2013;
Chambers, 2013) or supervised machine learning
on small collections of hand-annotated news doc-
uments (Angeli et al., 2012; Lee et al., 2014).

Social media especially contains time-sensitive
information and requires accurate temporal anal-
ysis, for example, for detecting real-time cyber-
security events (Ritter et al., 2015; Chang et al.,
2016), disease outbreaks (Kanhabua et al., 2012)
and extracting personal information (Schwartz
et al., 2015). However, most work on social media
simply uses generic temporal resolvers and there-
fore suffers from suboptimal performance. Recent
work on temporal resolution focuses primarily on
news articles and clinical texts (UzZaman et al.,
2013; Bethard and Savova, 2016).

In this paper, we present a new minimally su-
pervised approach to temporal resolution that re-
quires no in-domain annotation or hand-crafted
rules, instead learning from large quantities of
unlabeled text in conjunction with a database of
known events. Our approach is capable of learn-
ing robust time expression models adapted to the
informal style of text found on social media. Our
best model achieves a 0.68 F1 score when resolv-
ing date mentions in Twitter. This is a 17% in-
crease over SUTime (Chang and Manning, 2012),
outperforming other state-of-the-art time expres-
sion resolvers HeidelTime (Strétgen and Gertz,
2013), TempEX (Mani and Wilson, 2000) and
UWTime (Lee et al., 2014) as well. Our approach
also produces a confidence score that allows us
to trade recall for precision. To the best of our
knowledge, TweeTIME is the first time resolver
designed specifically for social media data. This
is also the first time that distant supervision is suc-
cessfully applied for end-to-end temporal recogni-
tion and normalization.

2 System Overview

Our system consists of two major components — a
Temporal Recognizer and a Temporal Normal-
izer. The subsystems are shown in Figure 1:

2.1 Temporal Recognizer

The goal of the recognizer is to predict the tempo-
ral tag of each word, given a sentence (or a tweet)
W = wi,...,w,. We propose a multiple-instance
learning model and a missing data model that are
capable of learning word-level taggers given only
sentence-level labels.

Our recognizer module in is built using a
database of known events as distant supervision.
We assume tweets published around the time of
a known event that mention a central entity are
also likely to contain time expressions referring
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Figure 1: TweeTIME system diagram of model training.

to the event’s date. For each event, we gather
all tweets that contain the central entity and are
posted within 7 days of the date when the event
happend. We then label each tweet based on the
event date in addition to the tweet’s creation date.

Unlike supervised learning, where labeled in-
stances are provided to the learner, in multiple in-
stance learning scenarios (Dietterich et al., 1997),
the learner is only provided with bags of instances
labeled as either positive (where at least one in-
stance is positive) or all negative. This is a close
match to our problem setting, in which sentences
are labeled with tags that should be assigned to
one or more words. While learning, we never di-
rectly observe the words’ tags (z = z1,..., 2p).
Instead, they are latent and we only observe the
date of an event mentioned in the text, from
which we derive sentence-level binary variables
t = t1,...,1; corresponding to temporal tags
for the sentence. Following previous work on
multiple-instance learning (Hoffmann et al., 2011;
Xu et al., 2014), we model the connection between
sentence-level labels and word-level tags using a
set of deterministic-OR factors ¢¢"*t.

The overall conditional probability of our model
is defined as:
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where f(z;, w;) is a feature vector and
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While the multiple-instance learning assump-
tion works well much of the time, it can easily be
violated — there are many tweets that mention en-
tities involved in an event but that never explicitly
mention its date. To handle this we adopt the miss-
ing data model of Ritter et. al. (2013). This model
splits the sentence-level variables, ¢ into two parts
: m which represents whether a temporal tag is
mentioned by at least one word of the tweet, and
t" which represents whether a temporal tag can be
derived from the event date. A set of pairwise po-
tentials ¢)(my,t}) are introduced that encourage
(but don’t strictly require) agreement between m;;
and t;-, that is:
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Here, «, (Penalty), and «, (Reward) are param-
eters for the MiDaT model. «,, is the penalty for
extracting a temporal tag that is not related to the
event-date and «, is the reward for extracting a tag
that matches the date.

2.2 Temporal Normalizer

The Temporal Normalizer is built using a log-
linear model which takes the tags t produced by
the Temporal Recognizer as input and outputs one



or more dates mentioned in a tweet. We for-
mulate date normalization as a binary classifica-
tion problem: given a tweet w published on date
dP¥? we consider 22 candidate target dates (w,
df?) such that df*"? = dr*b + [, where | =
-10,...,—-1,0,4+1,...,+10, limiting the possi-
ble date references that are considered within 10
days before or after the tweet creation date, in ad-
dition to dlc‘md = null (the tweet does not mention
a date). The normalizer is similarly trained us-
ing the event database as distant supervision. The
probability that a tweet mentions a candidate date
is estimated using a log-linear model:

P(dcand|w7 dpub) x 69"~g(w,d1”“b,t) (4)

where ™ and g are the parameter and feature
vector respectively in the Temporal Normalizer.

3 Results

To evaluate the final performance of our system
and compare against existing state-of-the art time
resolvers, we randomly sampled 250 tweets from
2014-2016 and manually annotated them with nor-
malized dates; note that this is a separate date
range from our weakly-labeled training data which
is taken from 2011-2012. The final performance of
our system, compared against a range of state-of-
the-art time resolvers is presented in Table 1.

System \ Prec. \ Recall \ F-value
TweeTIME | 0.58 | 0.70 0.63
SUTime 0.54 | 0.64 0.58
TempEx 0.56 0.58 0.57
HeidelTime | 0.43 0.52 0.47
UWTime 0.39 | 0.50 0.44

Table 1: Performance comparison of TweeTIME
against state-of-the-art temporal taggers.

We see that TweeTIME significantly outper-
forms SUTime, TempEx, HeidelTime and UW-
Time on this challenging task of time expression
resolution.

4 Conclusion

We presented a time resolver for social media do-
main that can learn from large amounts of unla-
beled text using distant supervision. Our method
extracts word-level temporal tags from tweets and
combine them with a variety of other features in a
novel date-resolver that predicts normalized dates

referenced in a Tweet. Our proposed time resolver
outperforms SUTime, TempEx, HeidelTime and
UWTime on this challenging dataset for time nor-
malization on the challenging social media do-
main.

References

Omar Alonso, Michael Gertz, and Ricardo Baeza-
Yates. 2007. On the value of temporal informa-
tion in information retrieval. In ACM SIGIR Forum.
ACM, volume 41, pages 35-41.

Gabor Angeli, Christopher D Manning, and Daniel Ju-
rafsky. 2012. Parsing time: Learning to interpret
time expressions. In Proceedings of the 2012 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL).

Steven Bethard. 2013. A synchronous context free
grammar for time normalization. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Steven Bethard and Guergana Savova. 2016. SemEval-
2016 Task 12: Clinical TempEval. In Proceedings of
the 10th International Workshop on Semantic Eval-
uation (SemEval).

Nathanael Chambers. 2013. NavyTime: Event and
time ordering from raw text. In Proceedings of the
7th International Workshop on Semantic Evaluation
(SemEval).

Angel X Chang and Christopher D Manning. 2012.
SUTime: A library for recognizing and normaliz-
ing time expressions. In Proceedings of the 8th In-
ternational Conference on Language Resources and
Evaluation (LREC).

Ching-Yun Chang, Zhiyang Teng, and Yue Zhang.
2016. Expectation-regulated neural model for event
mention extraction. Proccedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Technologies
(NAACL) .

Leon Derczynski and Robert J Gaizauskas. 2013. Tem-
poral signals help label temporal relations. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Thomas G Dietterich, Richard H Lathrop, and Tomés
Lozano-Pérez. 1997. Solving the multiple instance
problem with axis-parallel rectangles. Artificial in-
telligence 89(1).

Quang Xuan Do, Wei Lu, and Dan Roth. 2012. Joint
inference for event timeline construction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP).



Raphael Hoffmann, Congle Zhang, Xiao Ling,
Luke Zettlemoyer, and Daniel S. Weld. 2011.
Knowledge-based weak supervision for information
extraction of overlapping relations. In The 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies (ACL).

Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Grif-
fitt, and Joe Ellis. 2011. Overview of the tac 2011
knowledge base population track. In Proceedings of
the Fourth Text Analysis Conference (TAC).

Nattiya Kanhabua, Sara Romano, Avaré Stewart, and
Wolfgang Nejdl. 2012. Supporting temporal ana-
Iytics for health-related events in microblogs. In
Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management

(CIKM).

Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettle-
moyer. 2014. Context-dependent semantic parsing
for time expressions. In Proceedings of 52nd An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Xiao Ling and Daniel S Weld. 2010. Temporal infor-
mation extraction. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI).

Inderjeet Mani and George Wilson. 2000. Robust tem-
poral processing of news. In Proceedings of the 38th
Annual Meeting on Association for Computational
Linguistics (ACL).

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter.
In Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining (KDD).

Alan Ritter, Evan Wright, William Casey, and Tom
Mitchell. 2015. Weakly supervised extraction of
computer security events from Twitter. In Proceed-
ings of the 24th International Conference on World
Wide Web (WWW).

Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Et-
zioni. 2013. Modeling missing data in distant su-
pervision for information extraction. Transactions
of the Association for Computational Linguistics
(TACL) 1:367-378.

H Andrew Schwartz, Greg Park, Maarten Sap, Evan
Weingarten, Johannes FEichstaedt, Margaret Kern,
Jonah Berger, Martin Seligman, and Lyle Ungar.
2015. Extracting human temporal orientation in
Facebook language. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL).

Jannik Strétgen and Michael Gertz. 2013. Multilingual
and cross-domain temporal tagging. Language Re-
sources and Evaluation 47(2):269-298.

Naushad UzZaman, Hector Llorens, James Allen, Leon
Derczynski, Marc Verhagen, and James Pustejovsky.
2013. SemEval-2013 Task 1: TEMPEVAL-3: Eval-
uating time expressions, events, and temporal rela-
tions. In Proceedings of the 7th International Work-
shop on Semantic Evaluation (SemEval).

Wei Xu, Alan Ritter, Chris Callison-Burch, William B.
Dolan, and Yangfeng Ji. 2014. Extracting lexi-
cally divergent paraphrases from Twitter. Transac-

tions of the Association for Computational Linguis-
tics (TACL) 2(1).



